NWP | The orographic gravity wave drag (GWDO)

The wave stress of orography gravity wave drag scheme

\[ \frac{\partial U}{\partial t} = - \frac{1}{\rho} \frac{\partial \tau_x}{\partial z} \]

GWDO

The gravity-wave drag parameterization

\[ \tau_{GWD} = \rho_0 E \frac{m}{\lambda_{eff}} G \frac{|U_0|^3}{N_0} \]

The blocked-layer drag parameterization

\[ \tau_{BLD} = \frac{1}{2} \rho_0 \frac{m}{\Delta_x^2} C_d \Delta_x^{\perp} L_x^{\perp} h_B |U_0|^2 \]

References

  1. Choi, H.-J., and S.-Y. Hong (2015), An updated subgrid orographic parameterization for global atmospheric forecast models, J. Geophys. Res. Atmos., 120,12,445–12,457, doi:10.1002/ 2015JD024230.

Applications

  1. 张涵斌, 史永强, 卢冰, 等. 2024. 尺度适应重力波拖曳方案在高分辨率数值预报中的应用研究[J]. 大气科学, 48(2): 789−802. DOI: 10.3878/j.issn.1006-9895.2304.22235

NWP | The orographic gravity wave drag (GWDO)
https://waipangsze.github.io/2024/05/31/NWP_gwdo/
Author
wpsze
Posted on
May 31, 2024
Updated on
November 15, 2024
Licensed under