Maths | Boundary Conditions
In the study of differential equations, a boundary-value problem is a differential equation subjected to constraints called boundary conditions. A solution to a boundary value problem is a solution to the differential equation which also satisfies the boundary conditions.
Summary of boundary conditions for the unknown function, \(y\), constants \(c_0\) and \(c_1\) specified by the boundary conditions, and known scalar functions \(f\) and \(g\) pecified by the boundary conditions.
Name | Form on 1st part of boundary | Form on 2nd part of boundary |
---|---|---|
Dirichlet | \(y = f\) | |
Neumann | \(\dfrac{\partial y}{\partial n} = f\) | |
Robin | \(c_0 y + c_1 \dfrac{\partial y}{\partial n} = f\) | |
Mixed | \(y = f\) | \(c_0 y + c_1 \dfrac{\partial y}{\partial n} = g\) |
Cauchy | both \(y = f\) and \(\dfrac{\partial y}{\partial n} = g\) |
- 根據條件的形式,邊值條件分以下三類
- 第一類邊值條件:也稱為狄利克雷邊界條件,直接描述物理系統邊界上的物理量,例如振動的弦兩端與平衡位置的距離;
- 第二類邊值條件:也稱為諾伊曼邊界條件,描述物理系統邊界上物理量垂直邊界的導數的情況,例如導熱細杆端點的熱流;
- 第三類邊值條件:物理系統邊界上物理量與垂直邊界導數的線性組合,例如,細杆端點的自由冷卻,溫度、熱流均不確定,但是二者的關係確定,即可列出二者線性組合而成的邊值條件。
Boundary type | Formal Name | Mathematical form |
---|---|---|
Type 1 | Dirichlet | \(h(x,y,z,t) = constant\) |
Type 2 | Neumann | \(\dfrac{\partial h}{\partial n} = constant\) |
Type 3 | Cauchy | \(\dfrac{\partial h}{\partial n} + c h= constant\) |
邊值條件也可以根據邊值問題對應的微分算子來分類:若是使用橢圓算子,則問題為橢圓邊值問題;使用雙曲線算子,則問題為雙曲線邊值問題。依微分算子還可以將問題再細分為線性及非線性等。
Maths | Boundary Conditions
https://waipangsze.github.io/2024/10/25/maths-Boundary-conditions/