MPAS-Atmosphere idealized test cases
The downloads below for MPAS-Atmosphere idealized test cases include the following:
an MPAS mesh file to be used with the test case;
for 3-d test cases, mesh decomposition files for several MPI task counts;
a namelist file for creating initial conditions for the test case;
a namelist file for running the model ; and
NCL scripts for making plots of the output.
The process of generating initial conditions and running each test case is described in further detail in the MPAS-Atmosphere Users' Guide.
Test cases on the sphere
The Jablonowski and Williamson baroclinic wave test case.
Jablonowski, C., & Williamson, D. L. (2006). A baroclinic instability test case for atmospheric model dynamical cores. Quarterly Journal of the Royal Meteorological Society, 132(621C), 2943–2975. https://doi.org/10.1256/qj.06.12
The dynamical core is initialized with steady-state, balanced initial conditions that are an analytic solution to the hydrostatic primitive equations. This model set-up reveals how well a dynamical core maintains this initial state before numerical round-off and truncation errors as well as gravity waves degrade the steady state.
Steps to run this test case:
Link the init_atmosphere_model
and atmosphere_model
executables from the top-level MPAS directory.
Run init_atmosphere_model
to create initial conditions.
The log file may show WARNING messages; these can generally be ignored.
Run atmosphere_model
Run the bwave_surface_p.ncl script to produce plots of surface pressure each simulated day.
1 2 3 4 5 6 7 8 bwave_surface_p.ncl x1.40962.graph.info.part.16 namelist.atmosphere x1.40962.graph.info.part.2 namelist.init_atmosphere x1.40962.graph.info.part.24 README x1.40962.graph.info.part.4 stream_list.atmosphere.output x1.40962.graph.info.part.6 streams.atmosphere x1.40962.graph.info.part.8 streams.init_atmosphere x1.40962.grid.nc x1.40962.graph.info.part.12
CONSOLE
and,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 netcdf x1.40962.init { dimensions: nVertLevels = 26 ; nCells = 40962 ; Time = UNLIMITED ; // (1 currently) StrLen = 64 ; nEdges = 122880 ; nVertices = 81920 ; TWO = 2 ; maxEdges = 10 ; maxEdges2 = 20 ; vertexDegree = 3 ; R3 = 3 ; nMonths = 12 ; nSoilComps = 8 ; FIFTEEN = 15 ; nVertLevelsP1 = 27 ; nSoilLevels = 4 ;
NETCDF
Create a run.sh,
1 2 3 4 5 6 7 8 9 10 11 12 #!/bin/bash export CODE_DIR=/home/wpsze/MPAS-A/mpasv822/MPASv822/export MPAS_ENV=/home/wpsze/MPAS-A/mpas_env.shsource ${MPAS_ENV} source /home/wpsze/micromamba/etc/profile.d/micromamba.sh micromamba activate mpas_envln -s ${CODE_DIR} /init_atmosphere_modelln -s ${CODE_DIR} /atmosphere_model ./init_atmosphere_model ./atmosphere_model
SH
the run is done and shows,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 timer_name total calls min max avg pct_tot pct_par par_eff 1 total time 6369.85205 1 6369.85205 6369.85205 6369.85205 100.00 0.00 1.00 2 initialize 16.04797 1 16.04797 16.04797 16.04797 0.25 0.25 1.00 3 read_ICs 12.92155 1 12.92155 12.92155 12.92155 0.20 80.52 1.00 2 diagnostic_fields 39.15386 6146 0.00027 0.55109 0.00637 0.61 0.61 1.00 2 stream_output 135.25525 3073 0.00000 25.31770 0.04401 2.12 2.12 1.00 2 time integration 6178.20117 3072 1.83821 6.71001 2.01113 96.99 96.99 1.00 3 atm_rk_integration_setup 72.62624 3072 0.02114 0.06312 0.02364 1.14 1.18 1.00 3 atm_compute_moist_coefficients 37.50331 3072 0.01115 0.03584 0.01221 0.59 0.61 1.00 3 physics_get_tend 22.05075 3072 0.00633 0.03133 0.00718 0.35 0.36 1.00 3 atm_compute_vert_imp_coefs 45.81344 3072 0.01347 0.04496 0.01491 0.72 0.74 1.00 3 atm_compute_dyn_tend 2480.10986 9216 0.20928 0.82551 0.26911 38.94 40.14 1.00 3 small_step_prep 133.52666 9216 0.01284 0.03533 0.01449 2.10 2.16 1.00 3 atm_advance_acoustic_step 2095.08105 36864 0.04626 0.15461 0.05683 32.89 33.91 1.00 3 atm_divergence_damping_3d 457.87030 36864 0.01101 0.03708 0.01242 7.19 7.41 1.00 3 atm_recover_large_step_variables 268.87030 9216 0.02323 0.08294 0.02917 4.22 4.35 1.00 3 atm_compute_solve_diagnostics 445.47675 9216 0.03804 0.16322 0.04834 6.99 7.21 1.00 3 atm_rk_dynamics_substep_finish 43.84446 3072 0.01267 0.03757 0.01427 0.69 0.71 1.00 ----------------------------------------- Total log messages printed: Output messages = 25140 Warning messages = 0 Error messages = 0 Critical error messages = 0 -----------------------------------------
LOG
Plot: ncl bwave_surface_p.ncl
, for surface pressure ,
1 2 3 4 5 6 rdzw = f->rdzw(:) p = f->pressure(iTime,:,0) rho=f->rho(iTime,:,:) qv = f->qv(iTime,:,:) h = (p + 0.5/rdzw(0)*9.80616*(1.25*rho(:,0) - .25*rho(:,1)))/100. ;for dry!!! ;h = (p + 0.5/rdzw(0)*9.80616*(1.25*rho(:,0)*(1.+qv(:,0)) - .25*rho(:,1)*(1.+qv(:,1))))/100. ;for moist!!!
NCL
Test cases on the Cartesian plane
Supercell
The supercell thunderstorm test case.
Idealized Nonhydrostatic Supercell Simulations in the Global MPAS | Klemp | 2014
Supercell Thunderstorms
Strong, long-lived convective cells
Deep, persistent rotating updrafts
May propagate tranverse to the mean winds
May split into two counter-rotating storms
Produce most of the world’s intense tornadoes
Based on historical supercell simulations (Weisman and Klemp, 1982, 1984)
Zarzycki, C. M., Jablonowski, C., Kent, J., Lauritzen, P. H., Nair, R., Reed, K. A., ... & Skamarock, W. C. (2019). DCMIP2016: the splitting supercell test case. Geoscientific Model Development, 12(3), 879-892.
Steps to run this test case:
Link the init_atmosphere_model
and atmosphere_model
executables from the top-level MPAS directory.
Run init_atmosphere_model
to create initial conditions.
Run atmosphere_model
.
Run the supercell.ncl
script to produce plots theta, vertical velocity , etc.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 netcdf supercell_init { dimensions: nVertLevels = 40 ; nCells = 28080 ; Time = UNLIMITED ; // (1 currently) StrLen = 64 ; nEdges = 84240 ; nVertices = 56160 ; TWO = 2 ; maxEdges = 6 ; maxEdges2 = 12 ; vertexDegree = 3 ; R3 = 3 ; nMonths = 12 ; nSoilComps = 8 ; FIFTEEN = 15 ; nVertLevelsP1 = 41 ; nSoilLevels = 4 ;
NETCDF
the run is done and shows,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 timer_name total calls min max avg pct_tot pct_par par_eff 1 total time 6989.56445 1 6989.56445 6989.56445 6989.56445 100.00 0.00 1.00 2 initialize 13.22789 1 13.22789 13.22789 13.22789 0.19 0.19 1.00 3 read_ICs 11.03032 1 11.03032 11.03032 11.03032 0.16 83.39 1.00 2 diagnostic_fields 30.90804 4802 0.00030 0.53316 0.00644 0.44 0.44 1.00 2 stream_output 52.69895 2401 0.00000 24.40299 0.02195 0.75 0.75 1.00 2 time integration 6891.87109 2400 2.28900 4.57639 2.87161 98.60 98.60 1.00 3 physics driver 0.01804 2400 0.00000 0.00014 0.00001 0.00 0.00 1.00 3 atm_rk_integration_setup 81.38436 2400 0.02777 0.08220 0.03391 1.16 1.18 1.00 3 atm_compute_moist_coefficients 61.76581 2400 0.01953 0.08913 0.02574 0.88 0.90 1.00 3 physics_get_tend 32.39993 2400 0.00967 0.02704 0.01350 0.46 0.47 1.00 3 atm_compute_vert_imp_coefs 43.12508 2400 0.01534 0.04965 0.01797 0.62 0.63 1.00 3 atm_compute_dyn_tend 1610.07593 7200 0.17735 0.70892 0.22362 23.04 23.36 1.00 3 small_step_prep 97.92229 7200 0.01138 0.03734 0.01360 1.40 1.42 1.00 3 atm_advance_acoustic_step 1270.13843 28800 0.03023 0.10505 0.04410 18.17 18.43 1.00 3 atm_divergence_damping_3d 310.51599 28800 0.00890 0.05312 0.01078 4.44 4.51 1.00 3 atm_recover_large_step_variables 237.22810 7200 0.02374 0.08794 0.03295 3.39 3.44 1.00 3 atm_advance_scalars 986.22546 4800 0.14607 0.64590 0.20546 14.11 14.31 1.00 3 atm_compute_solve_diagnostics 371.22009 7200 0.03595 0.17258 0.05156 5.31 5.39 1.00 3 atm_advance_scalars_mono 644.47906 2400 0.18351 0.88479 0.26853 9.22 9.35 1.00 3 atm_rk_dynamics_substep_finish 43.15440 2400 0.01410 0.04277 0.01798 0.62 0.63 1.00 3 microphysics 1031.64172 2400 0.30451 0.79860 0.42985 14.76 14.97 1.00 4 mp_kessler 247.80276 2400 0.08487 0.28454 0.10325 3.55 24.02 1.00 ----------------------------------------- Total log messages printed: Output messages = 26971 Warning messages = 0 Error messages = 0 Critical error messages = 0 -----------------------------------------
LOG
Plot,
Mountain-wave
The Schaer mountain-wave test case.
Schär, C., Leuenberger, D., Fuhrer, O., Lüthi, D., & Girard, C. (2002). A new terrain-following vertical coordinate formulation for atmospheric prediction models. Monthly Weather Review, 130(10), 2459-2480.
Steps to run this test case:
Link the init_atmosphere_model
and atmosphere_model
executables from the top-level MPAS directory
Run init_atmosphere_model
to create initial conditions
Run atmosphere_model
Run the mtn_wave_w.ncl
script to plot vertical cross-sections of vertical velocity
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 netcdf mtn_wave_init { dimensions: nVertLevels = 70 ; nCells = 1600 ; Time = UNLIMITED ; // (1 currently) StrLen = 64 ; nEdges = 4800 ; nVertices = 3200 ; TWO = 2 ; maxEdges = 6 ; maxEdges2 = 12 ; vertexDegree = 3 ; R3 = 3 ; nMonths = 12 ; nSoilComps = 8 ; FIFTEEN = 15 ; nVertLevelsP1 = 71 ; nSoilLevels = 4 ;
NETCDF
the run is done and shows,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 timer_name total calls min max avg pct_tot pct_par par_eff 1 total time 479.17487 1 479.17487 479.17487 479.17487 100.00 0.00 1.00 2 initialize 1.40130 1 1.40130 1.40130 1.40130 0.29 0.29 1.00 3 read_ICs 1.04874 1 1.04874 1.04874 1.04874 0.22 74.84 1.00 2 diagnostic_fields 38.32835 6002 0.00030 0.26142 0.00639 8.00 8.00 1.00 2 stream_output 8.16368 3001 0.00000 2.18816 0.00272 1.70 1.70 1.00 2 time integration 430.28293 3000 0.12909 0.37118 0.14343 89.80 89.80 1.00 3 atm_rk_integration_setup 7.68167 3000 0.00226 0.00653 0.00256 1.60 1.79 1.00 3 atm_compute_moist_coefficients 3.88766 3000 0.00115 0.00331 0.00130 0.81 0.90 1.00 3 physics_get_tend 1.73502 3000 0.00049 0.00179 0.00058 0.36 0.40 1.00 3 atm_compute_vert_imp_coefs 4.89605 3000 0.00145 0.00413 0.00163 1.02 1.14 1.00 3 atm_compute_dyn_tend 181.87900 9000 0.01650 0.06131 0.02021 37.96 42.27 1.00 3 small_step_prep 9.66831 9000 0.00094 0.00315 0.00107 2.02 2.25 1.00 3 atm_advance_acoustic_step 113.06064 36000 0.00273 0.01248 0.00314 23.59 26.28 1.00 3 atm_divergence_damping_3d 37.56601 36000 0.00091 0.00282 0.00104 7.84 8.73 1.00 3 atm_recover_large_step_variables 21.39947 9000 0.00175 0.00898 0.00238 4.47 4.97 1.00 3 atm_compute_solve_diagnostics 37.34831 9000 0.00319 0.01347 0.00415 7.79 8.68 1.00 3 atm_rk_dynamics_substep_finish 4.19751 3000 0.00123 0.00363 0.00140 0.88 0.98 1.00 ----------------------------------------- Total log messages printed: Output messages = 24552 Warning messages = 0 Error messages = 0 Critical error messages = 0 -----------------------------------------
LOG
Plot,
References
Skamarock, W. C., Klemp, J. B., Duda, M. G., Fowler, L. D., Park, S., & Ringler, T. D. (2012). A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering. Monthly Weather Review, 140(9), 3090-3105. https://doi.org/10.1175/MWR-D-11-00215.1
Test cases: Nonhydrostatic flows on Cartesian planes
2D Scha¨r test case
2D density current
Supercell simulation
Test cases: Large-scale flow on the sphere
Dry baroclinic wave simulations
Unfiltered baroclinic wave simulations