1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
import numpy as np import xarray as xr import pandas as pd import glob
def check_assign(ds, var, lat, lon): if var in ds: return ds[var].interp(latitude=lat, longitude=lon, method='linear').values else: return np.nan
def calculate_wind_direction(u, v): """ Calculates the meteorological wind direction from u and v components.
Args: u (float or array-like): Eastward wind component. v (float or array-like): Northward wind component.
Returns: float or array-like: Wind direction in degrees (0-360), representing the direction the wind is coming *from*. """ return (np.rad2deg(np.arctan2(u, v)) + 180.0) % 360.0
stations = pd.read_csv('station.csv')
yyyymm="202411" dd="30" grib_files = sorted(glob.glob(f"./0p25/{yyyymm}/{yyyymm}{dd}/gfs_*0p25*"))
grib_files = [file for file in grib_files if not file.endswith('.idx')]
if grib_files: grib_files = grib_files[1:4]
results = []
for grib_file in grib_files: print(f"Processing: {grib_file}")
ds_2t = xr.open_dataset(grib_file, engine='cfgrib', decode_timedelta=True, filter_by_keys={'shortName': '2t'}) ds_2r = xr.open_dataset(grib_file, engine='cfgrib', decode_timedelta=True, filter_by_keys={'shortName': '2r'})
ds_10u = xr.open_dataset(grib_file, engine='cfgrib', decode_timedelta=True, filter_by_keys={'shortName': '10u'}) ds_10v = xr.open_dataset(grib_file, engine='cfgrib', decode_timedelta=True, filter_by_keys={'shortName': '10v'}) ds_100u = xr.open_dataset(grib_file, engine='cfgrib', decode_timedelta=True, filter_by_keys={'shortName': '100u'}) ds_100v = xr.open_dataset(grib_file, engine='cfgrib', decode_timedelta=True, filter_by_keys={'shortName': '100v'})
ds_20u = xr.open_dataset(grib_file, engine='cfgrib', decode_timedelta=True, filter_by_keys={'shortName': 'u', 'typeOfLevel': 'heightAboveGround', 'level': 20}) ds_20v = xr.open_dataset(grib_file, engine='cfgrib', decode_timedelta=True, filter_by_keys={'shortName': 'v', 'typeOfLevel': 'heightAboveGround', 'level': 20}) ds_30u = xr.open_dataset(grib_file, engine='cfgrib', decode_timedelta=True, filter_by_keys={'shortName': 'u', 'typeOfLevel': 'heightAboveGround', 'level': 30}) ds_30v = xr.open_dataset(grib_file, engine='cfgrib', decode_timedelta=True, filter_by_keys={'shortName': 'v', 'typeOfLevel': 'heightAboveGround', 'level': 30}) ds_40u = xr.open_dataset(grib_file, engine='cfgrib', decode_timedelta=True, filter_by_keys={'shortName': 'u', 'typeOfLevel': 'heightAboveGround', 'level': 40}) ds_40v = xr.open_dataset(grib_file, engine='cfgrib', decode_timedelta=True, filter_by_keys={'shortName': 'v', 'typeOfLevel': 'heightAboveGround', 'level': 40}) ds_50u = xr.open_dataset(grib_file, engine='cfgrib', decode_timedelta=True, filter_by_keys={'shortName': 'u', 'typeOfLevel': 'heightAboveGround', 'level': 50}) ds_50v = xr.open_dataset(grib_file, engine='cfgrib', decode_timedelta=True, filter_by_keys={'shortName': 'v', 'typeOfLevel': 'heightAboveGround', 'level': 50}) ds_80u = xr.open_dataset(grib_file, engine='cfgrib', decode_timedelta=True, filter_by_keys={'shortName': 'u', 'typeOfLevel': 'heightAboveGround', 'level': 80}) ds_80v = xr.open_dataset(grib_file, engine='cfgrib', decode_timedelta=True, filter_by_keys={'shortName': 'v', 'typeOfLevel': 'heightAboveGround', 'level': 80})
ds_dswrf = xr.open_dataset(grib_file, engine='cfgrib', decode_timedelta=True, filter_by_keys={'typeOfLevel': 'surface', 'shortName': 'dswrf'}) ds_sp = xr.open_dataset(grib_file, engine='cfgrib', decode_timedelta=True, filter_by_keys={'shortName': 'sp'}) ds_hpbl = xr.open_dataset(grib_file, engine='cfgrib', decode_timedelta=True, filter_by_keys={'shortName': 'hpbl'})
ds_vis = xr.open_dataset(grib_file, engine='cfgrib', decode_timedelta=True, filter_by_keys={'shortName': 'vis', 'typeOfLevel': 'surface'}) ds_cape = xr.open_dataset(grib_file, engine='cfgrib', decode_timedelta=True, filter_by_keys={'shortName': 'cape', 'typeOfLevel': 'surface'}) ds_cin = xr.open_dataset(grib_file, engine='cfgrib', decode_timedelta=True, filter_by_keys={'shortName': 'cin', 'typeOfLevel': 'surface'})
selected_time = ds_2t.valid_time.values selected_time_utc = pd.to_datetime(selected_time) selected_time_utc_plus_8 = selected_time_utc + pd.Timedelta(hours=8)
print(selected_time)
for index, row in stations.iterrows(): lat = row['latitude'] lon = row['longitude'] t2m = check_assign(ds_2t, 't2m', lat, lon) - 273.15 r2m = check_assign(ds_2r, 'r2', lat, lon) u10 = check_assign(ds_10u, 'u10', lat, lon) v10 = check_assign(ds_10v, 'v10', lat, lon) u80 = check_assign(ds_80u, 'u', lat, lon) v80 = check_assign(ds_80v, 'v', lat, lon) u100 = check_assign(ds_100u, 'u100', lat, lon) v100 = check_assign(ds_100v, 'v100', lat, lon) dswrf = check_assign(ds_dswrf, 'dswrf', lat, lon) hpbl = check_assign(ds_hpbl, 'hpbl', lat, lon) vis = check_assign(ds_vis, 'vis', lat, lon) results.append({ 'station': row['station'], 'datetime[UTC]': selected_time_utc, 'datetime[BJT]': selected_time_utc_plus_8, 't2m[degC]': t2m, 'r2m[%]': r2m, 'u10[m/s]': u10, 'v10[m/s]': v10, 'ws10[m/s]': np.sqrt(u10**2 + u10**2), 'wd10[deg]': calculate_wind_direction(u10, v10), 'ws80[m/s]': np.sqrt(u80**2 + u80**2), 'wd80[deg]': calculate_wind_direction(u80, v80), 'ws100[m/s]': np.sqrt(u100**2 + u100**2), 'wd100[deg]': calculate_wind_direction(u100, v100), 'dswrf[W/m2]': dswrf, 'hpbl[m]': hpbl, 'vis[m]': vis, })
output_df = pd.DataFrame(results)
output_df.to_csv(f'GFS_{yyyymm}{dd}.csv', index=False)
|