MPAS | Convert LCZs into static.nc

LCZs source

Convert tif to netcdf

Convert LCZs into MPAS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os, math, time, sys, glob, logging
import xarray as xr
import numpy as np
from scipy import stats as st

logging.basicConfig(level=logging.WARNING) # DEBUG, INFO, WARNING

in_static = xr.open_dataset("in_static.nc")
lcz_dataset = xr.open_dataset("lcz.nc")

print(in_static)
print(lcz_dataset)

latCell = in_static["latCell"][:].values*57.2957795
lonCell = in_static["lonCell"][:].values*57.2957795
nCells = latCell.shape[0]
dcEdge = in_static["dcEdge"][:].values # meter
edgesOnCell = in_static["edgesOnCell"][:].values
nEdges = dcEdge.shape[0]
maxEdges = edgesOnCell.shape[1]
ivgtyp = in_static["ivgtyp"][:].values

print("="*40)
print("nCells, nEdges, maxEdges = ", nCells, nEdges, maxEdges)
print("latCell = ", latCell.shape)
print("lonCell = ", lonCell.shape)
print("dcEdge = ", dcEdge.shape)
print("edgesOnCell = ", edgesOnCell.shape)
print("ivgtyp = ", ivgtyp.shape)
print("min/max = ", np.min(latCell), np.max(latCell), np.min(lonCell), np.max(lonCell))

lat = lcz_dataset["lat"][:].values
lon = lcz_dataset["lon"][:].values
Band2 = lcz_dataset["Band2"][:].values
nlat = lat.shape[0]
nlon = lon.shape[0]

min_lat, max_lat = np.min(lat), np.max(lat)
min_lon, max_lon = np.min(lon), np.max(lon)
dlatlon = np.abs(lat[1] - lat[0])*111 # deg to km

print("="*40)
print("nlat, nlon = ", nlat, nlon)
print("lat = ", lat.shape)
print("lon = ", lon.shape)
print("min_lat, max_lat = ", min_lat, max_lat)
print("min_lon, max_lon = ", min_lon, max_lon)
print("diff lat/lon = ", lat[1:5]-lat[0:4], lon[1:5]-lon[0:4])
print("Band2 = ", Band2.shape)

print("="*40)
#radius = 1km
tmp_count_urban = 0
tmp_count_urban_change = 0
##
for px in range(nCells): # nCells
if(px%5000 == 0):
print(round(px/nCells*100), " %")

if(ivgtyp[px] == 13 or ivgtyp[px] == 32): # 13 is urban or 32 is urban
tmp_count_urban = tmp_count_urban + 1
if( (min_lat <= latCell[px]) and (max_lat >= latCell[px]) and (min_lon <= lonCell[px]) and (max_lon >= lonCell[px]) ): # within LCZ dataset
index_lat = np.argmin(np.abs(lat - latCell[px]))
index_lon = np.argmin(np.abs(lon - lonCell[px]))
tmp_info = str(latCell[px] - lat[index_lat]) +" "+ str(lonCell[px] - lon[index_lon]) +" "+ str(Band2[index_lat, index_lon])
logging.info(tmp_info)
tmp_count_urban_change = tmp_count_urban_change +1

#
# LCZ: 1 to 17
# Only 1 to 11 are used and corresponding to 31 (LCZ1) to 41 (LCZE = LCZ11, index = 15)
# LCZ E (LCZ 11): Rock and paved;
#
if ( Band2[index_lat, index_lon] < 11 or Band2[index_lat, index_lon] == 15 ):
#
# For select from nearest cell,
# in_static["ivgtyp"][px] = Band2[index_lat, index_lon] + 30
#
tmp_dx = np.min(dcEdge[edgesOnCell[px,:]])/1000 # meter to km
tmp_num_cell = round((tmp_dx/dlatlon)/2) # count and take half

#
# For take mode, may check the boundary of Band2
# 1) remove 11,12,13,14,16,17
#

tmp_ar1 = Band2[index_lat-tmp_num_cell:index_lat+tmp_num_cell, index_lon-tmp_num_cell:index_lon+tmp_num_cell].flatten()
tmp_ar2 = tmp_ar1

# only 1-10 and 15(LCZ11) are our needs on LCZ dataset.
# then, remove the test.
for py in [11,12,13,14,16,17]:
if np.where(tmp_ar2 == py)[0].size != 0: # if not empyt array
tmp_ar2 = np.delete(tmp_ar2, np.where(tmp_ar2 == py)[0][:])

tmp_array = tmp_ar2 + 30
tmp = st.mode(tmp_array)[0] # stats. mode. Compute the mode (most common value) along an axis of an array.

# To check wehther LCZ dataset is None value?
# Some LCZ datasets has 0 that is nothing.
if (len(tmp) == 0):
continue

if (int(tmp[0]) == 45):
in_static["ivgtyp"][px] = 41
else:
in_static["ivgtyp"][px] = int(tmp[0])

else:
in_static["ivgtyp"][px] = 32
else:
in_static["ivgtyp"][px] = 32

print("Total urban in MPAS mesh = ", tmp_count_urban)
print("Change urban in MPAS mesh = ", tmp_count_urban_change)
# in_static["ivgtyp"][:] = 31/32/33
in_static.to_netcdf("out_static.nc")

Example

A test case:

  • GBA
  • Tokyo
  • Houston
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
├── convert2LCZ.py
├── final_static.nc -> final-process/step3/out_static.nc
├── GBA
│   ├── arcgis_lcz_colormap.clr
│   ├── c672ca892c88d1e078a81e7a085913396172f81c_factsheet.html
│   ├── c672ca892c88d1e078a81e7a085913396172f81c.kmz
│   ├── c672ca892c88d1e078a81e7a085913396172f81c.tif
│   ├── data
│   ├── factsheet_files
│   ├── figures
│   ├── GBA.nc -> lcz_filter_v3.nc
│   ├── lcz_filter_v3.nc
│   ├── lcz_filter_v3.tif -> c672ca892c88d1e078a81e7a085913396172f81c.tif
│   ├── log.log
│   ├── qgis_lcz_colormap.txt
│   └── run_tif2nc.sh -> ../run_tif2nc.sh
├── final-process
│   ├── convert2LCZ.py -> ../convert2LCZ.py
│   ├── lcz_filter_v3.nc -> ../lcz_filter_v3.nc
│   ├── run_nc2LCZ.sh -> ../run_nc2LCZ.sh
│   ├── static.nc -> /home/wpsze/static.nc
│   ├── step1
│   │   ├── convert2LCZ.py -> ../convert2LCZ.py
│   │   ├── GBA.nc -> ../../../GBA/GBA.nc
│   │   ├── in_static.nc -> static.nc
│   │   ├── lcz.nc -> GBA.nc
│   │   ├── out_static.nc
│   │   ├── run_nc2LCZ.sh -> ../run_nc2LCZ.sh
│   │   └── static.nc -> ../static.nc
│   ├── step2
│   │   ├── convert2LCZ.py -> ../../convert2LCZ.py
│   │   ├── in_static.nc -> ../step1/out_static.nc
│   │   ├── lcz.nc -> Tokyo.nc
│   │   ├── out_static.nc
│   │   ├── run_nc2LCZ.sh -> ../run_nc2LCZ.sh
│   │   └── Tokyo.nc -> ../../../Tokyo/Tokyo.nc
│   └── step3
│   ├── convert2LCZ.py -> ../convert2LCZ.py
│   ├── Houston.nc -> ../../../Houston/map/Houston.nc
│   ├── in_static.nc -> ../step2/out_static.nc
│   ├── lcz.nc -> Houston.nc
│   ├── out_static.nc
│   └── run_nc2LCZ.sh -> ../run_nc2LCZ.sh
├── Houston
│   ├── 037c80744fc1034b8472f594d829c53ce1cccfa7.zip
│   ├── 67a3371158ad3ac12d720fde089622c259e8e400.zip
│   └── map
├── lcz_filter_v3.nc
├── lcz_filter_v3.tif
├── run_nc2LCZ.sh
├── run_tif2nc.sh
└── Tokyo
├── 67a3371158ad3ac12d720fde089622c259e8e400_factsheet.html
├── 67a3371158ad3ac12d720fde089622c259e8e400.kmz
├── 67a3371158ad3ac12d720fde089622c259e8e400.tif
├── arcgis_lcz_colormap.clr
├── data
├── factsheet_files
├── figures
├── lcz_filter_v3.nc
├── lcz_filter_v3.tif -> 67a3371158ad3ac12d720fde089622c259e8e400.tif
├── log.log
├── qgis_lcz_colormap.txt
├── run_tif2nc.sh -> ../run_tif2nc.sh
└── Tokyo.nc -> lcz_filter_v3.nc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#!/bin/bash

source /home/wpsze/micromamba/etc/profile.d/micromamba.sh
micromamba activate gdal

whereis gdal_translate

# for checking
gdal_translate --long-usage

# gdal_translate -of netCDF -co "FOMRAT=NC4" ia.tif ia.nc

# ln -s lcz_filter_v3.nc output.nc

gdal_translate -of netCDF -co "FOMRAT=NC4" lcz_filter_v3.tif lcz_filter_v3.nc

MPAS | Convert LCZs into static.nc
https://waipangsze.github.io/2025/03/11/MPAS-Convert-LCZs-into-static-nc/
Author
wpsze
Posted on
March 11, 2025
Updated on
March 12, 2025
Licensed under